<u>Departmen</u>t of E&TC Engineering

Subject : Digital Electronics			
Discipline: ET&C		Name of the Faculty: Sarada Prasanna Singh	
Course Code: TH-2		Semester:	3 rd
Total Periods: 60		Examination:	2023(Winter)
Theory Periods:	4P/W	Class Test:	20
Maximum Marks:	100	End Semester Examination:	80

Week	Class Day	Theory Topics			
1st	1 st	Number System-Binary, Octal, Decimal, Hexadecimal - Conversion from			
	2 nd	one system to another number system.			
	3 rd	Arithmetic Operation-Addition, Subtraction, Multiplication, Division, 1's & 2's complement of Binary numbers& Subtraction using			
	4 th	complements method			
2nd	1 st	Digital Code & its application & distinguish between weighted & non-			
	2 nd	weight Code, Binary codes, excess-3 and Gray codes.			
	3 rd	Logic gates: AND,OR,NOT,NAND,NOR, Exclusive-OR, Exclusive-NOR			
	4 th	Symbol, Function, expression, truth table & timing diagram			
3rd	1 st	Universal Gates& its Realisation			
	2 nd	Boolean algebra, Boolean expressions, Demorgan's Theorems			
	3 rd	Represent Logic Expression: SOP & POS forms			
	4 th	Karnaugh map (3 & 4 Variables)&Minimization of logical expressions ,don't care conditions			
4th	1 st	Karnaugh map (3 & 4 Variables)&Minimization of logical expressions ,don't care conditions			
	2 nd	Half adder, Full adder, Half Subtractor, Full Subtractor, Serial and			
	3 rd	Parallel Binary 4 bit adder			
	4 th	Multiplexer (4:1), De- multiplexer (1:4), Decoder, Encoder, Digital comparator (3 Bit)			
5th	1 st	Seven segment Decoder			
	2 nd	(Definition, relevance, gate level of circuit Logic circuit, truth table, Applications of above)			
	3 rd	Principle of flip-flops operation, its Types			
	4 th	SR Flip Flop using NAND,NOR Latch (un clocked)			
6th	6th 1st Clocked SR,D,JK,T,JE	ClockedSR,D,JK,T,JK Master Slave flip-flops-Symbol, logic Circuit,			
	2 nd	truth table and applications			
	3 rd	Concept of Racing and how it can be avoided			
	4 th	Shift Registers-Serial in Serial -out, Serial- in Parallel-out, Parallel in serial out and Parallel in parallel out			

	1 st	Shift Registers-Serial in Serial -out, Serial- in Parallel-out, Parallel in serial out and Parallel in parallel out		
7th	2 nd	Universal shift registers-Applications.,		
İ	3 rd	Types of Counter & applications		
	4 th	Types of Counter & applications		
8th	1 st	Binary counter, Asynchronous ripple counter (UP & DOWN), Decade		
	2 nd	counter. Synchronous counter, Ring Counter.		
	3 rd	Concept of memories-RAM, ROM, static RAM, dynamic RAM,PS RAM		
	4 th	Basic concept of PLD & applications		
9th	1 st	Necessity of A/D and D/A converters		
	2 nd	D/A conversion using weighted resistors methods.		
	3 rd	D/A conversion using R-2R ladder (Weighted resistors) network.		
	4 th	D/A conversion using K-2K lauder (weighted resistors) network.		
10th	1 st	Cut off frequency, passband and stop band.		
	2 nd	Classify filters- low pass, high pass, band pass, band stop filters & study their Characteristics.		
	3 rd	A/D conversion using counter method		
	4 th	A/D conversion using Successive approximate method		
11th	1 st	Various logic families &categories according to the IC fabrication process.		
	2 nd	Characteristics of Digital ICs- Propagation Delay, fan-out, fan-in, Power		
	3 rd	Dissipation ,Noise Margin ,Power Supply requirement &Speed with Reference to logic families.		
	4 th	Features, circuit operation &various applications of TTL(NAND), CMOS (NAND & NOR)		

<u>Departmen</u>t of E&TC Engineering

Subject: VLSI & EMBEDDED SYSTEM			
Discipline: ET&C		Name of the Faculty: Sarada Prasanna Singh	
Course Code: TH-2		Semester:	5 th
Total Periods:	60	Examination:	2023(Winter)
Theory Periods:	4P/W	Class Test:	20
Maximum Marks:	100	End Semester Examination:	80

Week	Class Day	Theory Topics
1st	1 st	Historical perspective- Introduction
	2 nd	Classification of CMOS digital circuit types
	3 rd	Introduction to MOS Transistor& Basic operation of MOSFET.
	4 th	Structure and operation of MOSFET (n-MOS enhancement type) & COMS
2nd	1 st	MOSFET V-I characteristics,
<u> </u>	2 nd	Working of MOSFET capacitances.
	3 rd	Modelling of MOS Transistors including Basic concept the SPICE level-1 models, the level-2 and level-3 model.
	4 th	Flow Circuit design procedures,
зrd	1 st	VLSI Design Flow & Y chart
	2 nd	Design Hierarchy
	3 rd	VLSI design styles-FPGA, Gate Array Design, Standard cells based, Full custom
	4 th	Simplified process sequence for fabrication
-41-	1st	Basic steps in Fabrication processes Flow,
4th	2 nd	Fabrication process of nMOS Transistor
	3 rd	CMOS n-well Fabrication Process Flow
	4 th	MOS Fabrication process by n-well on p-substrate
5th	1 st	CMOS Fabrication process by P-well on n-substrate
	2 nd	Layout Design rules
	3 rd	Stick Diagrams of CMOS inverter
	4 th	Basic nMOS inverters, Working of Resistive-load Inverter,
6th	1 st	Inverter with n-Type MOSFET Load – Enhancement Load, Depletion n-MOS inverter
•	2 nd	CMOS inverter – circuit operation and characteristics and interconnect effects: Delay time definitions
	3 rd	CMOS Inventor design with delay constraints – Two sample mask lay out for p-type substrate.
	4 th	Define Static Combinational logic ,working of Static CMOS logic circuits (Two-input NAND Gate)

	1 st	CMOS logic circuits (NAND2 Gate)
7th	2 nd	CMOS Transmission Gates(Pass gate),
	3 rd	Complex Logic Circuits - Basics
	4 th	Classification of Logic circuits based on their temporal behaviour
8th	1 st	SR Flip latch Circuit
	2 nd	Clocked SR latch only.
	3 rd	CMOS D latch.
	4 th	Basic principles of Dynamic Pass Transistor Circuits
9th	1 st	Dynamic RAM, SRAM,
	2 nd	Flash memory
	3 rd	Design Language (SPL & HDL)& HDL & EDA tools & VHDL and packages Xlinx
	4 th	Design strategies & concept of FPGA with standard cell based design
10th	1 st	VHDL for design synthesis using CPLD or FPGA
	2 nd	Raspberry Pi - Basic idea.
	3 rd	Embedded Systems Overview,list of embedded systems,characteristics ,example – A Digital Camera
	4 th	Embedded Systems TechnologiesTechnology – Definition -Technology for Embedded Systems -Processor Technology -IC Technology.
11th	1 st	Design Technology-Processor Technology, General Purpose Processors – Software, Basic Architecture of Single Purpose Processors – Hardware.
	2 nd	Application – Specific Processors, Microcontrollers, Digital Signal Processors (DSP)
	3 rd	IC Technology- Full Custom / VLSI,Semi-Custom ASIC (Gate Array & Standard Cell), PLD (Programmable Logic Device)
	4 th	Basic idea of Arduino micro controller

<u>Departmen</u>t of E&TC Engineering

Subject: WAVE PROPAGATION & BROADBAND COMMUNICATION ENGINEERING			
Discipline: ET&C Name of the Faculty: prabhakar nayak			r nayak
Course Code: TH-2		Semester:	5 th
Total Periods: 60		Examination:	2023(Winter)
Theory Periods:	4P/W	Class Test:	20
Maximum Marks: 100 End Semester Examinatio			80

Week	Class Day	Theory Topics
1st	1 st	Effects of environments such as reflection, refraction, interference, diffraction, absorption and attenuation (Definition only)
	2 nd	Classification based on Modes of Propagation-Ground wave, Ionosphere ,Sky wave propagation, Space wave propagation
	3 rd	Definition – critical frequency, max. useable frequency, skip distance, fading, Duct propagation & Troposphere scatter propagation actual height and virtual height
	4 th	Radiation mechanism of an antenna-Maxwell equation.
2nd	1 st	Definition - Antenna gains, Directive gain, Directivity, effective aperture, polarization, input impedance, efficiency, Radiator resistance,
	2 nd	Bandwidth, Beam width, Radiation pattern
	3 rd	Operation of following antenna with advantage & applications. a)
	4 th	Directional high frequency antenna:, Yagi & Rohmbus only b) UHF &Microwave antenna:: Dish antenna (with parabolic reflector) & Horn antenna
зrd	1 st	Antenna -types of antenna: Mono pole and dipole antenna and omni directional antenna
	2 nd	Basic Concepts of Smart Antennas- Concept and benefits of smart antennas
	3 rd	Fundamentals of transmission line
	4 th	Equivalent circuit of transmission line & RF equivalent circuit
4th	1 st	Characteristics impedance, methods of calculations & simple numerical.,
	2 nd	Losses in transmission line.
	3 rd	Standing wave – SWR, VSWR, Reflection coefficient, simple numerical.
	4 th	Quarter wave & half wavelength line
5th	1 st	Impedance matching & Stubs – single & double
	2 nd	Primary & secondary constant of X-mission line.
	3 rd	Define-Aspect ratio, Rectangular Switching. Flicker, Horizontal Resolution, Video bandwidth, Interlaced scanning, Composite video signal, Synchronization pulses
	4 th	TV Transmitter – Block diagram & function of each block
6th	1 st	Monochrome TV Receiver -Block diagram & function of each block.
0	2 nd	Colour TV signals (Luminance Signal & Chrominance Signal,(I & Q,U & V Signals)
	3 rd	Types of Televisions by Technology- cathode-ray tube TVs, Plasma

[(LCD),Organic Light-Emitting Diode (OLE)	LP),Liquid Crystal Display D) Display, Quantum Light-
Emitting Diode (QLED) – only Comparison	n based on application
4 th Discuss the principle of operation - LCD dis	splay, Large Screen Display
1 st CATV systems & Types & networks	
7th Digital TV Technology-Digital TV Signals, T signals & Digital TV receiver Video program	Fransmission of digital TV
3 rd Define Microwave Wave Guides	
4 th Operation of rectangular wave gives and its	advantage.
8th 1st Propagation of EM wave through wave guid	le with TE & TM modes.
2 nd Circular wave guide	
3 rd Operational Cavity resonator.	
4 th Working of Directional coupler, Isolators 8	k Circulator.
9th 1st Microwave tubes-Principle of operational o	of two Cavity Klystron.
2 nd Principle of Operations of Travelling Wave	Tubes
3 rd Principle of Operations of Cyclotron	
4 th Principle of Operations of Tunnel Diode & C	Gunn diode
10th 1st Broadband communication system-Fundam	nental of Components and
2 nd Network architecture	
3 rd Cable broadband data network- architectur	
broadband telecommunication internet bas	sed network.
11th 1st SONET(Synchronous Optical Network)-Sig	
topologies advantages applications, and dis	advantages
3 rd ISDN - ISDN Devices interfaces, services, A	architecture, applications,
4 th BISDN -interfaces & Terminals, protocol ar	chitecture applications

<u>Departmen</u>t of E&TC Engineering

Subject : ANALOG & DIGITAL COMMUNICATION			
Discipline: ET&C		Name of the Faculty: prabhakar nayak	
Course Code: TH-2		Semester:	5 th
Total Periods:	60	Examination:	2023(Winter)
Theory Periods:	5P/W	Class Test:	20
Maximum Marks:	100	End Semester Examination:	80

Week	Class Day	Theory Topics
1st	1 st	Communication Process- Concept of Elements of Communication System & its Block diagram
	2 nd	Source of information & Communication Channels
	3 rd	Classification of Communication systems (Line & Wireless or Radio)
	4 th	Modulation Process, Need of modulation and classify modulation process
	5 th	Analog and Digital Signals & its conversion
2nd	1 st	Basic concept of Signals & Signals classification (Analog and Digital)
	2 nd	Bandwidth limitation.
	3 rd	Amplitude modulation & derive the expression for amplitude modulation
	4 th	signal, power relation in AM wave & find Modulation Index.
	5 th	Generation of Amplitude Modulation(AM)- Linear level AM modulation only
3rd	1 st	Demodulation of AM waves (liner diode detector, square law detector & PLL)
	2 nd	Explain SSB signal and DSBSC signal
	3 rd	Methods of generating & detection SSB-SC signal (Indirect method only)
	4 th	Methods of generation DSB-SC signal (Ring Modulator) and detection of DSB-SC signal (Synchronous detection)
	5 th	Concept of Balanced modulators
4th	1 st	Vestigial Side Band Modulation
-	2 nd	Concept of Angle modulation & its types (PM & FM)
	3 rd	Basic principle of Frequency Modulation & Frequency Spectrum of FM Signal
	4 th	Expression for Frequency Modulated Signal & Modulation Index and sideband of FM signal
	5 th	Explain Phase modulation & difference of FM & PM)- working principle with Block Diagram
5th	1 st	Compare between AM and FM modulation (Advantages & Disadvantages)
	2 nd	Methods of FM Generation (Indirect (Armstrong) method only) working principle with Block Diagram

	3 rd	Methods of FM Demodulator or detector (Forster-Seely & Ratio detector)- working principle with Block Diagram	
	4 th	Classification of Radio Receivers,	
	5 th	Define the terms Selectivity, Sensitivity, Fidelity and Noise Figure	
6th	1 st	AM transmitter - working principle with Block Diagram	
	2 nd	Concept of Frequency conversion, RF amplifier & IF amplifier ,Tuning, S/N ratio	
	3 rd	Working of super heterodyne radio receiver with Block diagram	
	4 th	Working of FM Transmitter & Receiver with Block Diagram.	
	5 th	Concept of Sampling Theorem , Nyquist rate & Aliasing	
7.11	1 st	Sampling Techniques (Instantaneous, Natural, Flat Top)	
7th	2 nd	Analog Pulse Modulation - Generation and detection of PAM, PWM &	
	3 rd	PPM system with the help of Block diagram & comparison of all above.	
	4 th		
		Concept of Quantization of signal & Quantization error. Generation & Demodulation of PCM system with Block diagram & its	
	5 th	applications.	
8th	1 st	Companding in PCM & Vocoder	
	2 nd	Time Division Multiplexing & explain the operation with circuit diagram.	
	3 rd	Generation & demodulation of Delta modulation with Block diagram	
	4 th	Generation & demodulation of DPCM with Block diagram.	
	5 th	Comparison between PCM, DM , ADM & DPCM	
9th	1 st	Concept of Multiplexing (FDM & TDM)- (Basic concept, Transmitter & Receiver) & Digital modulation formats.	
	2 nd		
	3 rd	Advantages of digital communication system over Analog system	
	4 th	Digital modulation techniques & types	
	5 th		
10th	1 st	Generation and Detection of binary ASK, FSK, PSK, QPSK, QAM, MSK GMSK	
	2 nd		
	3 rd	Working of T1-Carrier system.	
	4 th		
	5 th	Spread Spectrum & its applications	
11th	1 st	Working operation of Spread Spectrum Modulation Techniques (DS-SS	
	2 nd	& FH-SS)	
	3 rd	Define bit, Baud, symbol & channel capacity formula.(Shannon Theorems)	
	4 th	Application of Different Modulation Schemes.	
	5 th	Types of Modem & its Application	

<u>Department</u> of ELECTRICAL Engineering

Subject : DIGITAL ELECTRONICS & MICROPROCESSOR				
Discipline: ELECTRIC	AL	Name of the Faculty: Sarada Pr	Name of the Faculty: Sarada Prasanna Singh	
Course Code:	TH-2	Semester:	5 th	
Total Periods:	60	Examination:	2023(Winter)	
Theory Periods:	5P/W	Class Test:	20	
Maximum Marks:	100	End Semester Examination:	80	

Week	Class Day	Theory Topics		
1st	1 st	Binary, Octal, Hexadecimal number systems and compare with Decimal system.		
	2 nd	Binary addition, subtraction, Multiplication and Division		
	3 rd	1's complement and 2's complement numbers for a binary number		
	4 th	Subtraction of binary numbers in 2's complement method.		
	5 th	Use of weighted and Un-weighted codes & write Binary equivalent number for a number in 8421, Excess-3 and Gray Code and viceversa.		
2nd	1 st	Importance of parity Bit.		
	2 nd	Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with truth table.		
	3 rd	1.8 Realize AND, OR, NOT operations using NAND, NOR gates.		
	4 th	1.9 Different postulates and De-Morgan's theorems in Boolean algebra.		
	5 th	1.10 Use Of Boolean Algebra For Simplification Of Logic Expression		
3rd	1 st	1.11 Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And POS Logic Expression Using K-Map		
	2 nd	2.1 Give the concept of combinational logic circuits.		
	3 rd	2.2 Half adder circuit and verify its functionality using truth table.		
	4 th	2.3 Realize a Half-adder using NAND gates only and NOR gates only.		
	5 th	2.4 Full adder circuit and explain its operation with truth table.		
4th	1 st	2.5 Realize full-adder using two Half-adders and an OR – gate and write truth table		
-	2 nd	2.6 Full subtractor circuit and explain its operation with truth table.		
	3 rd	2.7 Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer		
	4 th	2.8 Working of Binary-Decimal Encoder & 3 X 8 Decoder.		
	5 th	2.9 Working of Two bit magnitude comparator		
5th	1 st	3.1 Give the idea of Sequential logic circuits.		
•	2 nd	3.2 State the necessity of clock and give the concept of level clocking and edge triggering,		

	3 rd	3.3 Clocked SR flip flop with preset and clear inputs.
	4 th	3.5 Construct level clocked JK flip flop using S-R flip-flop and explain with truth table
	5 th	3.6 Concept of race around condition and study of master slave JK flip flop.
6th	1 st	3.7 Give the truth tables of edge triggered D and T flip flops and draw their symbols.
	2 nd	3.8 Applications of flip flops.
	3 rd	3.9 Define modulus of a counter
	4 th	3.10 4-bit asynchronous counter and its timing diagram.
	5 th	3.11 Asynchronous decade counter.
	1 st	3.12 4-bit synchronous counter.
7th	2 nd	3.13 Distinguish between synchronous and asynchronous counters.
	3 rd	3.14 State the need for a Register and list the four types of registers.
	4 th	3.15 Working of SISO, SIPO, PISO, PIPO Register with truth table using flip flop
	5 th	4.1 Introduction to Microprocessors, Microcomputers
8th	1 st	4.2 Architecture of Intel 8085A Microprocessor and description of each block.
	2 nd	4.3 Pin diagram and description.
	3 rd	4.4 Stack, Stack pointer & stack top
	4 th	4.5 Interrupts
	5 th	4.6 Opcode & Operand,
9th	1 st	4.7 Differentiate between one byte, two byte & three byte instruction with example.
	2 nd	4.8 Instruction set of 8085 example
	3 rd	4.9 Addressing mode
	4 th	4 .10 Fetch Cycle, Machine Cycle, Instruction Cycle, T-State
	5 th	4.11 Timing Diagram for memory read, memory write, I/O read, I/O write
10th	1 st	4.12 Timing Diagram for 8085 instruction
	2 nd	4.13 Counter and time delay.
	3 rd	4. 14 Simple assembly language programming of 8085
	4 th	5.1 Basic Interfacing Concepts, Memory mapping & I/O mapping
	5 th	
11th	1 st	5.2 Functional block diagram and description of each block of Programmable peripheral interface
	2 nd	Intel 8255,
	3 rd	5.3 Application using 8255: Seven segment LED display, Square wave
	4 th	generator, Traffic light Controller
	5 th	

<u>Departmen</u>t of E&TC Engineering

Subject: DATA COMMUNICATION & COMPUTER NETWORK			
Discipline: E&TC		Name of the Faculty: prabhakar nayak	
Course Code:	TH-2	Semester:	4 th
Total Periods: 60		Examination:	2023(summer)
Theory Periods:	4P/W	Class Test:	20
Maximum Marks:	100	End Semester Examination:	80

Week	Class Day	Theory Topics	
1st	1 st	1.1 Data Communication	
101	2 nd	1.2 Networks	
	3 rd	1.3 protocol& architecture, standard, osi, tcp/ip.	
	4 th	2.1 Data transmission Concepts and Terminology	
2nd	1 st	2.2 Analog and Digital Data transmission	
_	2 nd	2.3 Transmission impairments, Channel capacity.	
	3 rd	2.4 Transmission media, Guided Transmission, Wireless Transmission	
	4 th	3.1 Data encoding	
3rd	1 st	3.2 Digital data digital signals	
J	2 nd	3.3 Digital data analog signals	
	3 rd	3.4 Analog data digital signals	
	4 th	3.5 Analog data analog signals	
4th	1 st	4.1 Asynchronous and Synchronous Transmission	
	2 nd	4.2 Error Detection	
	3 rd	4.3 Line configuration	
	4 th	4.4 Flow Control,	
5th	1 st	4.5 Error Control	
	2 nd	4.6 Multiplexing	
	3 rd	4.7 FDM synchronous TDM	
	4 th	4.8 Statistical TDM	
- 4 ls	1 st	5.1 Circuit Switching networks	
6th	2 nd	5.2 Packet Switching principles	
	3 rd	5.3 X.25	
	4 th	5.4 Routing in Packet switching	
	1 st	5.5 Congestion.	
7th	2 nd	5.6 Effects of congestion, congestion control	
	3 rd	5.7 Traffic Management	
	4 th	5.8 Congestion Control in Packet Switching Network. flip flop	
	1st	6.1. Topology and Transmission Media.	

8th	2 nd	6.2 LAN protocol architecture	
	3 rd	6.3. Medium Access control	
	4 th	6.4 Bridges, Hub, Switch	
9th	1 st	6.5 Ethernet (CSMA/CD), Fiber Channel	
	2 nd	6.6 Wireless LAN Technology	
	3 rd	7.1 TCP/IP Protocol Suite	
	4 th	7.2 Basic Protocol functions	
İ	5 th	7.3 Principles of Internetworking	
10th	1 st	7.4 Internet Protocol operations	
	2 nd	7.5 Internet Protocol	

<u>Departmen</u>t of E&TC Engineering

Subject: MICROPROCESSOR & MICROCONTROLLER			
Discipline: E&TC		Name of the Faculty: Sarada Prasanna Singh	
Course Code:	TH-3	Semester:	4 th
Total Periods: 60		Examination:	2023(summer)
Theory Periods:	5P/W	Class Test:	20
Maximum Marks:	100	End Semester Examination:	80

Week	Class Day	Theory Topics
1st	1 st	1.1 Introduction to Microprocessor and Microcomputer & distinguish between them.
	2 nd	1.2 Concept of Address bus, Data bus, Control bus & System Bus
	3 rd	1.3 General Bus structure Block diagram.
	4 th	1.4 Basic Architecture of 8085 (8 bit) Microprocessor
	5 th	1.5 Signal Description (Pin diagram) of 8085 Microprocessor
2nd	1 st	1.6 Register Organizations, Distinguish between SPR & GPR, Timing & Control Module
	2 nd	1.7 Stack, Stack pointer &Stack top.
	3 rd	1.8 Interrupts:-8085 Interrupts, Masking of Interrupt (SIM, RIM).
	4 th	2.1 Addressing data & Differentiate between one-byte, two-byte &three-byte instructions with examples.
	5 th	2.2 Addressing modes in instructions with suitable examples.
3rd	1 st	2.3 Instruction Set of 8085(Data Transfer, Arithmetic, Logical, Branching, Stack& I/O , Machine Control)
	2 nd	2.4 Simple Assembly Language Programming of 8085 2.4.1 Simple Addition & Subtraction
	3 rd	2.4.2 Logic Operations (AND, OR, Complement 1's & 2's) & Masking of bits
	4 th	2.4.3 Counters & Time delay (Single Register, Register Pair, More than Two Register)
	5 th	2.4.4 Looping, Counting & Indexing (Call/JMP etc).
4th	1 st	2.4.5 Stack & Subroutine programes
4	2 nd	2.4.6 Code conversion, BCD Arithmetic & 16 Bit data Operation, Block Transfer.
	3 rd	2.4.7 Compare between two numbers
	4 th	2.4.8 Array Handling (Largest number & smallest number in the array)
	5 th	2.5 Memory & I/O Addressing,
5th	1 st	3.1 Define opcode, operand, T-State, Fetch cycle, Machine Cycle, Instruction cycle & discuss the concept of timing diagram.
	2 nd	3.2 Draw timing diagram for memory read, memory write, I/O read, I/O write machine cycle
	3 rd	3.3 Draw a neat sketch for the timing diagram for 8085 instruction (MOV, MVI, LDA instruction).
	4 th	4.1 Concept of interfacing

	5 th	4.2 Define Mapping &Data transfer mechanisms - Memory mapping & I/O Mapping
6th	1 st	4.3 Concept of Memory Interfacing:- Interfacing EPROM & RAM Memories
	2 nd	4.4 Concept of Address decoding for I/O devices
	3 rd	4.5 Programmable Peripheral Interface: 8255
	4 th	4.6 ADC & DAC with Interfacing.
	5 th	4.7 Interfacing Seven Segment Displays
	1 st	4.8 Generate square waves on all lines of 8255
7th	2 nd	4.9 Design Interface a traffic light control system using 8255.
	3 rd	4.10 Design interface for stepper motor control using 8255.
	4 th	4.11 Basic concept of other Interfacing DMA controller, USART
	5 th	5.1 Register Organisation of 8086
8th	1 st	5.2 Internal architecture of 8086
	2 nd	5.3 Signal Description of 8086
	3 rd	5.4 General Bus Operation& Physical Memory Organisation
	4 th	5.5 MinimumMode&Timings,
	5 th	5.6 Maximum Mode&Timings
9th	1 st	5.7 Interrupts and Interrupt Service Routines, Interrupt Cycle, Non- Maskable Interrupt, Maskable Interrupt
	2 nd	5.8 8086 Instruction Set & Programming: Addressing Modes, Instruction Set, Assembler Directives and Operators,
	3 rd	5.9 Simple Assembly language programmingusing 8086 instructions.
	4 th	6.1 Distinguish between Microprocessor & Microcontroller
	5 th	6.2 8 bit & 16 bit microcontroller
10th	1 st	6.3 CISC & RISC processor
	2 nd	6.4 Architectureof8051Micro controller
	3 rd	6.5 Signal Descriptionof8051Microcontrollers
	4 th	6.6 Memory Organisation-RAM structure, SFR
	5 th	
11th	1 st	6.7 Registers,timers,interrupts of 8051 Microcontrollers.
	2 nd	6.8 Addressing Modes of 8051
	3 rd	6.9 Simple 8051 Assembly Language ProgrammingArithmetic & Logic Instructions, JUMP, LOOP, CALL Instructions, I/O Port Programming
	4 th	6.10 Interrupts, Timer & Counters 6.11 Serial Communication
	5 th	6.12 Microcontroller Interrupts and Interfacing to 8255

<u>Departmen</u>t of E&TC Engineering

Subject : ANALOG ELECTRONICS & LINEAR IC			
Discipline: E&TC		Name of the Faculty: prabhakar nayak	
Course Code:	TH-4	Semester:	4 th
Total Periods:	60	Examination:	2023(summer)
Theory Periods:	5P/W	Class Test:	20
Maximum Marks:	100	End Semester Examination:	80

Week	Class Day	Theory Topics	
1st	1 st	1.1 Working principle, of Diode & its current equation, Specification and use of p-n junction diode.	
	2 nd	1.2 Breakdown of diode (Avlance&Zener Breakdown) and Construction, working, Characteristics	
	3 rd	1.3 Classification of Rectifiers and working of different types of	
	4 th	Rectifiers- Half-Wave Rectifier, Full-Wave Rectifier (CT & BRIDGE type)	
	5 th	1.4 Working principle of p-n-p and n-p-n transistor, different types of transistor connection (CB, CE and CC)& input and output characteristics of transistor in different connections	
2nd	1 st	1.5 Define ALPHA, BETA and GAMMA of transistors in various modes. Establish the Mathematical relationship between them.	
	2 nd	1.6 Basic concept of Biasing, Types of Biasing,h-parameter model of BJT,load line (AC &DC) and determine the Q-point.	
	3 rd	1.7 Types of Coupling, working principle and use of R-C Coupled Amplifier & Frequency Responses of R-C coupled Amplifier & draw the curve.	
	4 th	2.1 Classify Power Amplifier & Differentiate between Voltage and Power Amplifier	
	5 th	2.2 Working principle of different types of Power Amplifier (Class-A, Class-AB, Class-B and Class-C & Class D amplifier).	
зrd	1 st	2.3 Construction and working principle and advantages of Push Pull (Class-B) Amplifiers	
	2 nd	3.1 FET & its classifications & Differentiate between JFET & BJT	
	3 rd	3.2 Construction, working principle & characteristics of JEFT & Explain	
	4 th	JEFT as an amplifier, parameters of JFET & Establish relation among JFET parameters.	
	5 th	3.3 Construction & working principle MOSFET & its classification & characteristics (Drain & Transfer)	
4th	1 st	3.4 Explain the operation of CMOS, VMOS & LDMOS.	
4	2 nd	4.1 Define & classify Feedback Amplifier, principle of negative feedb	
	3 rd	with the help of block diagram, Types of feedback – negative &positive feedback.	
	4 th	4.2 Types of negative feedback – voltage shunt, voltage series, current	
	5 th	shunt& current series and characteristics voltage gain, bandwidth, input Impedance output impedance, stability, noise, distortion in amplifiers.	
5th	1 st	4.3 Oscillator -block diagram of sine wave oscillator ,Types Requirement of oscillationBarkhausen criterion	
	2 nd	4.4 RC oscillators – RC phase shift ,Crystal, LC oscillators – Colpitts , Hartley & Wien Bridge Oscillators :Circuit operation, circuit diagram, equation for frequency of oscillation & frequency stability	

	3 rd	5.1 Defined and classify Tuned amplifier, Explain parallel Resonant
		circuit, Resonance Curve & sharpness of Resonance.
	4 th	5.2 working principle of Single tuned Voltage& Double tuned Amplifier & its limitation
	5 th	5.3 Different type of Non-linear circuits - Clipper, diode series &shunt, positive& negative biased & unbiased and combinational clipper clippers circuit & its application.
6th	1 st	5.4 Different type of Clamper circuit (positive & negative clampers) & its application.
	2 nd	5.5 Working of Astable, Monostable & BistableMultivibrator with circuit diagram.
	3 rd	5.6 Working& use of Integrator and Differentiator circuit using R- C
	4 th	circuit(Linear), input / output waveforms & frequency response.
	5 th	6.1 Differential amplifier & explain its configuration & significance.
	1 st	6.2 Block diagram representation of a typical Op- Amp, its equivalent circuits and draw the schematic symbol
7th	2 nd	6.3 Discuss the types of integrated circuits manufacturer's designations
	3 rd	of ICs, Package types, pin identification and temperature and ordering information
	4 th	6.4 Define the following electrical characteristics input offset voltage,
	5 th	input offset current, CMMR, Large signal voltage gain, Slew rate .
8th	1 st	6.5 Draw and explain the Open Loop configuration (inverting, non-inverting Amplifier)
	2 nd	6.6 Draw the circuit diagram of the voltage series feedback amplifier and
	3 rd	derive the close loop Voltage gain, gain of feedback circuits input resistance, and output resistance, bandwidth and total output offset voltage with feedback.
	4 th	6.7 Draw the circuit diagram of the voltage shunt feedback amplifier and
	5 th	derive the close loop, Voltage gain, gain of feedback circuits and input resistance, and output resistance, bandwidth and total output offset voltage with feedback.
9th	1 st	7.1 Discuss the summing scaling and averaging of inverting and non-inverting amplifiers
	2 nd	7.2 DC & AC Amplifies using OP-AMP.
	3 rd	7.3 Integrator and differentiator using op-amp.
	4 th	7.4 Active filter and describe the filter design of fast order low Pass Butterworth
	5 th	7.5 Concept of Zero-Crossing Detector using Op-Amp
10th	1 st	7.6 Block diagram and operation of IC 555 timer &IC 565 PLL& its applications.
	2 nd	7.7 Working of Current to voltage Convertor using Operational Amplifier
	3 rd	7.8 Working of the Voltage to Frequency Convertor using Operational Amplifier.
	4 th	7.9 Working of the Frequency to Voltage Conversion using Operational Amplifier
	5 th	
11th	1 st	7.10 Operation of power supply using 78XX and 79XX,LM 317 Series with their PIN configuration
	2 nd	with their i in comiguration
	3 rd	
	4 th	7.11 Functional block diagram & Working of IC regulator LM 723 & LM 317
	5 th	U*/

<u>Department</u> of ELECTRICAL Engineering

Subject : Analog Electronics and OP-AMP				
Discipline: ELECTRICAL		Name of the Faculty: prabhakar nayak		
Course Code:	TH-2	Semester:	4 th	
Total Periods:	60	Examination:	2023(summer)	
Theory Periods:	4P/W	Class Test:	20	
Maximum Marks:	100	End Semester Examination:	80	

Week	Class Day	Theory Topics	
1st	1 st	Pn junction diode working, construction, v-I characteristic.	
	2 nd		
	3 rd		
	4 th	DC load line	
2nd	1 st	Important terms such as Ideal Diode, Knee voltage	
	2 nd	Junctions break down. 1.6.1 Zener breakdown 1.6.2 Avalanche breakdown	
	3 rd	P-N Diode clipping Circuit.	
	4 th	P-N Diode clamping Circuit	
3rd	1 st	Thermistors, Sensors & barretters	
	2 nd	Zener Diode	
	3 rd	Tunnel Diode	
	4 th	PIN Diode	
4th	1 st	Classification of rectifiers	
	2 nd	Analysis of half wave, full wave centre tapped and Bridge rectifiers and calculate: 3.2.1 DC output current and voltage 3.2.2 RMS output current and voltage 3.2.3 Rectifier efficiency 3.2.4 Ripple factor 3.2.5 Regulation 3.2.6 Transformer utilization factor 3.2.7 Peak inverse voltage 3.3 Filters: 3.3.1 Shunt capacitor filter 3.3.2 Choke input filter 3.3.3 π filter	
	3 rd		
	4 th		
5th	1 st		
	2 nd		
	3 rd		
	4 th		
6th	1 st	Principle of Bipolar junction transistor	
	2 nd	Different modes of operation of transistor	
	3 rd	Current components in a transistor	
	4 th	Transistor as an amplifier	
7th	1 st	Transistor circuit configuration & its characteristics 4.5.1 CB Configuration 4.5.2 CE Configuration 4.5.3 CC Configuration	
	2 nd		
	3 rd		
	4 th		

8th	1 st	5.1 Transistor biasing 5.2 Stabilization 5.3 Stability factor 5.4 Different method of Transistors Biasing 5.4.1 Base resistor method 5.4.2 Collector to base bias 5.4.3 Self bias or voltage divider method		
	3 rd	6.1 Practical circuit of transistor amplifier 6.2 DC load line and DC		
	4 th	equivalent circuit 6.3 AC load line and AC equivalent circuit 6.4 Calculation of gain		
9th	1 st	6.5 Phase reversal 6.6 H-parameters of transistors 6.7 Simplified H-parameters of transistors		
	2 nd			
	3 rd	6.8 Generalised approximate model 6.9 Analysis of CB, CE, CC amplifier		
	4 th	using generalised approximate model 6.10 Multi stage transistor amplifier		
10th	1 st	6.10.1 R.C. coupled amplifier 6.10.2 Transformer coupled amplifier		
	2 nd	6.11 Feed back in amplifier 6.11.1 General theory of feed back		
	3 rd	6.11.2 Negative feedback circuit 6.11.3 Advantage of negative feed back		
	4 th	6.12 Power amplifier and its classification 6.12.1 Difference between voltage amplifier and power amplifier		
11th	1 st	6.12.2 Transformer coupled class A power amplifier 6.12.3 Class A push – pull amplifier 6.12.4 Class B push – pull amplifier		
	2 nd	6.13 Oscillators 6.13.1 Types of oscillators 6.13.2 Essentials of transistor oscillator		
	3 rd	6.13.3 Principle of operation of tuned collector, Hartley, colpitt, phase shift, weinbridge oscillator (no mathematical derivations)		
	4 th	7.1 Classification of FET 7.2 Advantages of FET over BJT 7.3 Principle of operation of BJT		
12th	1 st	7.4 FET parameters (no mathematical derivation) 7.4.1 DC drain resistance 7.4.2 AC drain resistance 7.4.3 Trans-conductance 7.5 Biasing of FET		
	2 nd	8.1 General circuit simple of OP-AMP and IC – CA – 741 OP AMP 8.2 Operational amplifier stages 8.3 Equivalent circuit of operational amplifier 8.4 Open loop OP-AMP configuration		
	3 rd	8.5 OPAMP with fed back 8.6 Inverting OP-AMP 8.7 Non inverting OP-AMP 8.8 Voltage follower & buffer		
	4 th	8.9 Differential amplifier 8.9.1 Adder or summing amplifier 8.9.2 Sub tractor 8.9.3 Integrator 8.9.4 Differentiator 8.9.5 Comparator		